
Draw This Object:
A Study of Debugging Representations

Matúš Sulír
Technical University of Košice

Košice, Slovakia
matus.sulir@tuke.sk

Ján Juhár
Technical University of Košice

Košice, Slovakia
jan.juhar@tuke.sk

ABSTRACT
Domain-specific debugging visualizations try to provide a
view of a runtime object tailored to a specific domain and
highlighting its important properties. The research in this
area has focused mainly on the technical aspects of the cre-
ation of such views so far. However, we still lack answers
to questions such as what properties of objects are consid-
ered important for these visualizations, whether all objects
have an appropriate domain-specific view, or what clues
could help us to construct these views fully automatically.
In this paper, we describe an exploratory study where the
participants were asked to inspect runtime states of objects
displayed in a traditional debugger and draw ideal domain-
specific views of these objects on paper. We describe inter-
esting observations and findings obtained during this study
and a preliminary taxonomy of these visualizations.
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1 INTRODUCTION
One of the most important features of any development
environment – whether a live or a traditional one – is the
ability to show the current internal state of the program
to the programmer [22]. In contemporary IDEs (integrated
development environments) for mainstream programming
languages, this feature is incorporated in the debugger, as a
part called the object inspector or variables view.

Traditionally, an expandable tree view of variables in scope
is shown. Although this approach is universal, it has its
shortcomings. First, the developer can easily suffer from
information overload, since non-primitive variables have
fields, which in turn have their own sub-fields, etc. Second,
this kind of visualization is too generic – no matter whether
the object being displayed is a widget or a network socket,
the form is always the same.

For these reasons, approaches and tools for domain-specific
object views started to emerge. A domain-specific visualiza-
tion aims to display each object in a custom way, depicting
its essence. As a quick example, an object containing geo-
graphical coordinates could be displayed as a point on a map
instead of a list of two numbers. Domain-specific visualiza-
tion approaches range from simple proof-of-concepts such
as DoodleDebug [17] and Vebugger [14] to the advanced
ecosystem of the Moldable Tools [3]. The mentioned works
are primarily concerned with source code frameworks and
technical details which should enable the developers to con-
struct their own domain-specific views by scripting. In con-
trast with them, in this paper we would like to investigate
more conceptual questions, such as:

• In what various ways can states of objects be visually
represented and what interesting properties do these
views have?

• Can all objects be meaningfully described by a visual-
ization?

• What clues could help us to construct domain-specific
views without hand-coding them for each class sepa-
rately?

Visualizing a circle is considered easy. But one may won-
der: How do I visualize a TCPSocket? A TextReplacer? Or a
DefaultAdvisorChainFactory? According to Bret Victor, this

https://doi.org/10.1145/3328433.3328454
https://doi.org/10.1145/3328433.3328454


Programming ’19, April 1–4, 2019, Genova, Italy Matúš Sulír and Ján Juhár

is the wrong type of questions to ask and we should design
data structures which are easily visualizable instead [22].
Although we agree that programming needs to change and
designing visualizable structures is a part of this long pro-
cess, we strongly oppose the “wrong question” part. Trillions
of lines of code have been written using traditional program-
ming techniques. Instead of throwing all this effort away, we
should strive to gradually improve the state of the art, even
if the results might not be ideal.

Therefore, we selected a diverse set of classes from projects
written in Java – a popular but notoriously verbose and
rigid language. Participants of our study were asked to draw
domain-specific visualizations of the given object instances
of our selected classes, displayed in a traditional debugger.
In the following sections, we describe the method in detail
and summarize our observations and findings.

2 METHOD
Now we will describe the selected projects and classes, the
participants of the study and its procedure.

2.1 Projects
Our aim was to select projects from diverse domains, rela-
tively easily understandable for newcomers, and easily build-
able from source. The following three projects were selected:

• Java Text Tables1: a generator of textual tables using
ASCII characters – e.g., for the use in a console,

• Nominatim Java API2: a client library for a web ser-
vice which returns geographical coordinates given an
address (or vice versa),

• Chlorine-finder3: a library to detect and redact sensi-
tive data (addresses, e-mails, etc.) in text.

2.2 Classes and Objects
From the three projects, we chose a set of classes, aiming
for the diversity in purpose, complexity, member variables
count, and potential for visualization. A total of 11 classes
were selected. For their overview, see Table 1.

Since the essence of the study was to draw concrete ob-
jects at runtime, we had to provide our participants with
specific instances of the classes. To arrange this, we selected
test cases which covered the given classes. Then we desig-
nated breakpoints in the selected classes on places where the
objects were already sufficiently initialized. A combination
of a test case executed in the debug mode and a breakpoint
on a given line thus defined a reproducible runtime state of
each object. The resulting list consists of 12 objects, since for
the Border class, we selected two test cases.
1https://github.com/iNamik/java_text_tables
2https://github.com/jeremiehuchet/nominatim-java-api
3https://github.com/dataApps/chlorine-finder

2.3 Participants
In total, 33 subjects participated. Thirty of them were mas-
ter’s students of the Evolution of Software Systems course.
It is an elective course intended for students interested in
programming. According to the post-study survey, 80% of
them have already had industrial programming experience.

The remaining participants consisted of one PhD student
and two assistant professors working in the same department
as the researchers.

2.4 Procedure
First, the subjects read a short introduction to domain-specific
visualizations. It included a simple example of a Rectangle

object – first displayed in a traditional debugger and then as
a picture of a rectangle labeled with its dimensions.

Each participant was assigned a project, exceptionally two
projects. The subjects were given enough time to become ac-
quainted with the source code, run and inspect unit tests, etc.
They were also assigned a selection of 3 objects (instances
of 3 classes from Table 1).

For each object, they were asked to place a breakpoint on a
specified line (e.g., GridTable:73) and run the given unit test
(such as GridTableTest) in the debug mode. The Variables
View window of their IDE then displayed a list of variables
in scope, including the “this” variable, which was always
of the corresponding class (GridTable in this case). The task
was to draw the “this” object on paper – in a way which
should facilitate program comprehension.

The instructions said the drawings do not have to exhaus-
tively depict all aspects of the objects because the traditional
tree-view would remain available in the IDE. Animation and
interaction possibilities could be outlined in drawings and
further described textually in the web form. Multiple views
of the same object could be drawn if necessary.
The master’s students were also asked to describe the

synopsis of each drawing textually in the web form. For the
remaining three participants, a think-aloud protocol [24]
was applied: The subjects were speaking out their thoughts
and the researchers were taking notes.

One participant decided to skip the drawing of two objects,
another two objects could not be displayed in the debugger
because of technical problems. Therefore, we received a total
of 95 object drawings.

2.5 Analysis
All paperswere scanned and then inspected by the researchers.
During the inspection, both researchers took notes about
interesting observations and independently tagged all draw-
ings using qualitative coding [15], searching for common
patterns and distinguishing characteristics in the data. Then

https://github.com/iNamik/java_text_tables
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Table 1: A list of classes used in the study

Project Class Description

Java Text Tables SimpleTable A textual table – an object with a supposedly obvious visual representation.
GridTable Similar to SimpleTable, but the final dimensionsmust be specified during creation.
Border Defines the border style of tables. It contains a member of class Chars with 11

fields. E.g., for a double border, bottomLeft = “ ”, rightIntersect = “ ”, etc.
LeftAlign A singleton without instance variables, used in an implementation of function

currying (to gradually set parameters, such as a padding character).
TopPad Analogous to LeftAlign.

Nominatim API BooleanSerializer A fieldless class, used as a parameter of Java annotations. It contains a single
method named handle, which converts “true” or “false” into “1” or “0”.

Address A relatively large data class, consisting of 17 instance variables (5 non-primitive),
getters and setters. It represents a place on Earth.

OsmType An enumeration (either a NODE, WAY, or RELATION).
JsonNominatimClient A complicated class, something like a central control point of the API.

Chlorine-finder Redactor Combines a finding engine, which searches for sensitive data in a text, with a
replacer, which changes them to strings such as “xx-xx”.

MaskFactory A factory which creates Maskers after loading their configuration from an XML
file. A Redactor (above) is one such Masker.

they collectively constructed a taxonomy during personal
meetings.
The drawings of all participants who agreed to publish

them are available online4.

3 OBSERVATIONS AND FINDINGS
Nowwewill describe our observations and findings, grouped
by the categories of the taxonomy.

3.1 Form
First, we will look at an overall form of the drawings.

3.1.1 No Visualization. Classes TopPad and LeftAlign from
Java Text Tables and BooleanSerializer from Nominatim
API have something in common – they have no instance
variables. Although they may seem like borderline cases, it
is fairly common. Often the underlying reason is to utilize
polymorphism in various ways, but without a need to store
any state.
Interestingly enough, about half of the subjects did not

have any idea how to suitably draw objects without instance
variables. Their responses ranged from “I do not know” and
“N/A” to drawings of empty rectangles. Some ideas of the
other half will be reviewed later in this article.

3.1.2 Text. A few participants represented some objects
using a text-only notation, such as JSON (JavaScript Object
Notation): “I consider the JSON view more than sufficient,”
4https://doi.org/10.6084/m9.figshare.7823774

said one of them. The use of this notation was observed
almost exclusively in data-only objects (Address).
Since an enumeration (OsmType) is a simple object, rep-

resenting it textually was considered suitable by multiple
participants. The simplest drawing contains only the enumer-
ation value, as written in the source code: “NODE”. Other sub-
jects used a combination of the value and the standard string
representation (the result of calling the toString method on
this object), in this case, “NODE: N”.

3.1.3 Graphics. A vast majority of the drawings have some
kind of a graphical or semi-graphical form. This includes
tables, diagrams, and free-form drawings. In the following
sections, we will describe our findings regarding these rep-
resentations.

3.2 Included Data
An important question follows: Where is the origin of the
data reflected in the drawings?

3.2.1 Class Names. The drawings often encompassed the
name of the class of the object being drawn. Sometimes
they were simplified or otherwise changed: “table” instead
of SimpleTable, “padding top” instead of TopPad.
Since BooleanSerializer completely lacks instance vari-

ables, one participant resorted to the visualization of only
a static structure of the class. It was a UML-like drawing of
the class, including the class name, a list of implemented
interfaces, etc.

https://doi.org/10.6084/m9.figshare.7823774
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Figure 1: A view of an object of class Border with
conveniently spaced field values and split field names
(The participant’s drawing was recreated as a vector
image to achieve higher visual quality.)

3.2.2 Field Names. Field names were often displayed as a
part of standard “name: value” pairs in tables and diagrams.
However, we also encountered one particularly creative rep-
resentation of a Border object, which we can see in Figure 1.
First, all field values were spatially laid out according to their
meaning. Then, all two-word field names were split to indi-
vidual words, which were placed next to the corresponding
values. For example, we can see that the value of the topRight
field is “¬”.
Static final fields (constants) were generally considered

unimportant when drawing an object state, since their value
if not dependent on a specific object instance. However, one
participant included the text “double border” in a drawing
of a Border. If we wanted to automate this, the only viable
data source of the word “DOUBLE” would be the name of
the constant DOUBLE_LINE. In fact, the object the participant
was drawing was the value of this constant.

An object can be checked for identity (or equality) with
constants of its type. If a match is found, we can show
the given constant name in the visualization.

3.2.3 Field Values. Values of the member variables of the
objects being described are almost omnipresent in our re-
sponses. In general, field values can be projected into a visu-
alization in various ways, ranging from a literal inclusion of
their textual representations to a subtle indication of their
characteristics.
If present in the drawings, characters and strings were

written verbatim since this is their natural representation.
For example, a table cell containing lines “Left” and “Top”
stored as strings was drawn as a rectangle with these strings
inside: Left

Top .

Values of numeric fields were sometimes represented lit-
erally. For instance, the tableWidth and tableHeight mem-
bers of a GridTable were written as labels of the rectangle
edges in some drawings: 4

2. On the other hand, the numRows
and numCols fields defined in the same class were always
expressed only implicitly – by drawing a grid with the given
number of rows and columns: .

Booleans were presented in standard ways, such as “true”
or 1, but also as icons (✓).

One-dimensional arrays and collections were depicted as
comma-separated lists or tables.

Arrays of arrays and other types of nested collections were
always represented by a grid instead of a tree-view which
is utilized in many IDEs. However, this might be also affected
by the fact that the arrays were not jagged (the number of
sub-elements in each element was equal). As a helping factor
in the automated selection of an appropriate view, heuristics
using names could help. For instance, note that our classes
representing tables end their name with “Table”.
Some of the table views encompassed the indexes of all

rows and columns. The indexes were even named as “row”
and “column” in one of the drawings ( COLUMN 0

ROW 0 ). If we
wanted to automate the dimension naming, we could try to
analyze which variables are used in indexing operators, e.g.,
table[row][col].

Dimensions in multi-dimensional array visualizations can
be named after the variables used as indexes.

3.2.4 Other Execution Data. When we think about an “ob-
ject state”, we tend to think about its fields and sub-fields.
However, we often forget about the current execution stack
– the method being currently executed, its parameters, val-
ues of the current local variables, etc. Although they are
not traditionally perceived as a part of the object itself, they
often contain relevant information about it. For example, al-
though the LeftAlign class does not have any fields, it has the
method apply() with multiple parameters. In our study, the
breakpoint was inside this method, so its parameters were
accessible on the stack. Two participants included values of
some of these parameters in their drawings: a character used
to fill an empty space in a cell (“^”) and a width of the cell
(10).

Variables on the stack (parameters, local variables) can
also be included in the object’s visualization, even though
they are not a part of the object state per se.

Some participants included in their drawings data which
represented a result of a future execution, which is prob-
lematic with respect to automation. For example, when the
breakpoint was on the first line of the handle method of a
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Figure 2: A view of a BooleanSerializer, depicting the
execution of its method “handle”

Figure 3: A generic BooleanSerializer’s behavior view

BooleanSerializer and its parameter was “false”, one draw-
ing contained only the string “0”, which should have been
its return value. However, it was not yet computed at that
point.

Instead of visualizing the values alone, some subjects tried
to express the whole method execution process. In Figure 2,
we can see that the parameter is first converted to a boolean
and then to a string.
Some participants were trying to represent the method’s

behavior in a more general way. In the case of the boolean
serializer, instead of capturing only the specific input in the
given situation, they expressed multiple valid inputs and
their corresponding outputs:

"false" → 0 "true" → 1

In Figure 3, we can see a graphical and even more generic
representation of behavior.

Objects without fields can be visualized too. One of the
possibilities is to depict their behavior.

3.2.5 Hypothetical Context. When drawing a Border object,
multiple participants drew its context, specifically a table
which uses such a border. However, in some cases, it was
a 2x2 table – and a table with such dimensions is never
created during the execution of the supplied program. This
means that instead of drawing a real context, they designed
a hypothetical context – i.e., a situation which never occurs
during the execution of a program, but which is suitable for
a presentation of certain features of an object. We can see
the discussed visualization in Figure 4.

Figure 4: A table representing a hypothetical context
of the “Border” object

3.2.6 External Data. In some cases, the drawings contained
information beyond that contained in the source code or exe-
cution data. For example, we encountered a map of the world
with a point representing the given Address. Full automation
of the generation of similar visualizations is definitely prob-
lematic, since it requires domain knowledge and external
data source providers.

3.3 Excluded Data
Once the number of fields and sub-fields in a given object
exceeds some limit, displaying everything would cause in-
formation overload. An obvious idea which was suggested
by some subjects is to display fields of non-primitive types
in a form of a hyperlink, a collapsed tree view, or a similar
navigation mechanism. There is nothing bad with occasional
use of this approach. However, by applying it uniformly for
all fields in all objects, we would achieve nothing more than
a traditional Variables View available in current IDEs. There-
fore, a better approach is to prefer showing some kinds of
data while (temporarily) hiding others, according to some
criteria.

3.3.1 No Exclusions. Some visualizations drawn by the sub-
jects were complete – they contained information about all
fields (and recursively for their sub-fields) in some sense. We
encountered such visualizations only for the enumeration
OsmType and objects of class Border and GridTable (counting
only classes with fields, of course). When fully expanded,
up to the level of primitives and strings, the IDE Variables
tree-view of a Border has 12 items and GridTable 27 items.
However, a large portion of the GridTable’s fields were empty
arrays in our study.

3.3.2 Empty Arrays. When drawing a GridTable which had
only the first cell filled with data, about a half of the partic-
ipants depicted the whole table, while the other half drew
only one cell. Therefore, omitting empty arrays or other
collections from visualizations may or may not be suitable,
depending on a situation.

3.3.3 Null Values. In complicated objects such as JsonNomi-
natimClient, there were many fields with null values. The
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subjects tended to hide or collapse such fields in their draw-
ings: “They shouldn’t burden the user for now,” said one of
them.

Uninitialized variables are suitable candidates for exclu-
sion from visualizations.

3.3.4 Implementation Details. Important adepts for exclu-
sion from visualizations are “implementation details”. What
exactly constitutes an implementation detail is unclear, since
private member variables are, by definition, implementation
details of an object. One participant excluded internal struc-
ture of some fields in a JsonNominatimClient because they
were defined in a third-party library. Although this is def-
initely not an ultimate rule, it can be a hint for a potential
automated visualization generator.

JsonNominatimClient contains a variable httpClient, which
itself consists of many fields. One participant was looking at
the source code to find whether they were supplied to the
httpClient via a constructor, setters or other public methods.
According to him, if a client code of an API supplies a value
to another class (e.g., configuration settings such as a port
number), then it is not an implementation detail, otherwise
it could be omitted from the visualization.

In complicated objects, implementation details can be
omitted. They may include variables of types defined in
third-party libraries and sub-fields whose values were not
supplied as parameters of public API methods.

3.3.5 Fields of Given Types. Some views focused solely on
numeric fields, excluding variables of all other types. In Fig-
ure 5, we can see an Address object displayed as a point with
coordinates (X) and as a bounding box, again with exact nu-
meric coordinates listed. In contrast with this representation,
another participant depicted address as a table containing
the name of the settlement, county, state, and other purely
string-typed fields.

3.4 Relation Handling
In the following sections, we will discuss what kinds of re-
lations between objects the participants perceived and how
they depicted them.

3.4.1 Grouping. The JsonNominatimClient contains multi-
ple similarly named fields, such as searchUrl, reverseUrl,
and lookupUrl. In a drawing, a participant visually grouped
them into a separate table named “URLs” with rows named
“search”, “reverse” and “lookup”.

Interestingly enough, another participant also grouped the
fields, but in a different way. He drew a box for each request
type (“search”, “lookup”, “reverse”) and included variables

Figure 5: A view of an Address showing exclusively its
numeric fields

related to each of them in the corresponding box. For ex-
ample, in the first box, there was a searchUrl and a “search
response handler”. We can see this view in Figure 6.
We also encountered the grouping of variables by their

runtime values. Specifically, all values with null variables
were grouped at the bottom of the table, in an expandable
row named “other attributes” with a value “all null”.

Fields can be grouped by their name, purpose or value.

3.4.2 Nesting. In Figure 7, we can see a visual representation
of a 3x3 GridTable. Therefore, inside the cells, we would
expect their visual content: the text “Left Top” in the first
cell and an empty space in the rest of them. Instead, we see
debugging string representations of Java collections, such
as [Left, Top] or []. Therefore, various representations
can be nested inside each other. In our study, we have even
encountered a drawing with multiple levels of nesting.

3.4.3 Connecting. Relationships between two object tended
to be drawn using common connectors, such as lines or
arrows. Except for traditional memory references between
objects, we also noted conceptual references. For example, a
Redactor contains a list of finders (name: “Email, pattern:
“\b[A-Z]. . . ”) and a hash map named replacements (“Email”
→ “email@redacted.host”, . . . ). A drawing in Figure 8 shows
that the finders and replacements were “joined” by their
names (e.g., “Email”) into triples of the form name–pattern–
replacement. In the same figure, we can also see an example
of a railroad diagram representing the regular expression
nested in the overall view of this object.

Similarly, an Address object contained a String-typed field
named osmType with the value “node”. Although this field
was not of the type OsmType, a participant drew an arrow
between it and the enumeration OsmType.NODE.
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Figure 6: A JsonNominatimClient view grouping search- and lookup-related variables (simplified by researchers)

Figure 7: A textual array view nested in a graphical
GridTable

Conceptual references between objects can be included
in visualizations – e.g., two objects can be “joined” by a
common value of one of their fields.

3.5 Size
Visualizations of different sizes and complexities have dis-
tinctive potential use cases in IDEs.

3.5.1 Space-Constrained Representations. Some participants
drew simple, icon-like drawings. For instance, the most suc-
cinct representation of a Border in our study was a mere
horizontal double line drawing: “=”, i.e., a value of its field
horizontal. Although it does not express all necessary de-
tails, such terseness can be useful in situations when space
is constrained. This includes visual source code augmenta-
tion [18], such as our recent approach for displaying sample
variable values directly at the end of each line in a source

code editor [19]. It can also help a developer to improve ori-
entation and navigation when a lot of objects are presented
at the same time – which is a purpose of the icon indeed. In
our study, we have also spotted an elegant icon representing
a TopPad object and an OsmType with the value NODE: .

A simpler object can be often succinctly visualized by an
icon representing its class, enumeration value, or one of
its field values.

In a tree-like diagram of the Address object, there were
icons for numeric types 123 and strings Abc . In these cases,
icons were only supplementing the views of actual values
instead of trying to replace them.

3.5.2 Standard-Sized Views. A majority of visualizations
designed by our participants were too large to be used as
a word-size graphic or icon. However, they would fit into
auxiliary IDE tool windows displayed alongside the source
code and other views. Drawings from Figures 1–5 and 7
belong to this category.

3.5.3 Large Diagrams. Particularly for complicated objects
like a JsonNominatimClient or a Redactor, we encountered
large diagrammatic drawings which barely fit the A4 paper
used during the study. The most sensible application of such
visualizations would be to display them in a full-screen mode.

3.6 Interaction
Although pen and paper are not a perfect medium to express
interaction, multiple participants described interaction pos-
sibilities in their written or spoken notes. A vast majority of
them aimed to suppress potential information overload.



Programming ’19, April 1–4, 2019, Genova, Italy Matúš Sulír and Ján Juhár

Figure 8: Patterns and replacements of a Redactor, joined by their names

3.6.1 Expansion. When the number of fields to display was
too large, the subjects included controls to expand and col-
lapse details in their visualizations. Expansion controls were
present in Address, JsonNominatimClient, and Redactor. A
common representation was a familiar plus sign + . After
expansion, a nested view of a given field should be displayed.

3.6.2 Hyperlinks. Some objects consist of a collection of
otherwise relatively independent objects. For example, a
MaskFactory can containmultiple Maskers. A participant drew
it as a table of names and hyperlinks to individual objects:
“redactor” Redactor@1656 . Our subjects suggested opening each
such masker in a separate pop-up window. However, we sug-
gest using alternative interfaces such as a horizontal bound-
less tape [21] or Object Pager [3] to prevent the workspace
from being flooded by too many windows.

3.6.3 Zooming. One of the subjects suggested a zooming
interface [4] may be appropriate to inspect either one cell of a
GridTable or the whole table.We add that zooming interfaces
could be also used to inspect runtime objects with various
levels of detail – for example, at a lower zoom, to show only
the most important properties of the whole object, and to
show details of a specific aspect at a higher zoom.

4 THREATS TO VALIDITY
We used only 11 classes in this study, which can hardly be a
representative sample of all the code ever written. Further-
more, the classes were chosen subjectively by researchers.
Ideal visualizations highly depend on a particular domain –
and since we studied only 3 projects, the domain selection
was limited and relatively random. Nevertheless, we tried to
select a diverse set of classes from various points of views to
ensure the richness of data, which is an important factor for
qualitative studies.

Although we included some deeply nested objects (e.g.,
JsonNominatimClient), the majority of objects was rather
shallow. Furthermore, inherently graph-based objects were
not inspected.

The number of collected responses per class varied from 3
to 16. However, since we derived no important quantitative
measures from the responses, we do not consider this a large
threat to validity.

Although the participants were not already familiar with
the given projects, they were small enough to sufficiently
understand in one session (max. 1,600 lines of Java code).

During our study, the participants were not given any spe-
cific task to solve. We could obtain more interesting insights
by asking them to fix a bug or implement a new feature. Since
it may be difficult to say what is a useful visualization with-
out a task specified, studies of task-oriented visualizations
are an important future research direction.
The observations and findings described in this paper

might not be generalizable, which is a common shortcoming
of many qualitative studies. However, we perceive this article
mainly as a collection of ideas and a starting point for further
research.

5 RELATEDWORK
Software visualization is a vast research area, ranging from
static source code visualization [5] to algorithm animation
[23]. Therefore, we will focus on viewers of runtime states
of objects, particularly the ones displaying one state at a
time. Then we will review related empirical studies involving
visual object representations or drawings in general.

5.1 Visualization Approaches
On one end of the spectrum, there are visualizations which
are usable in any context and for all types of objects, but
which are very generic and may not be optimal for high-level
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Drawings
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Expansion
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Zooming

Figure 9: The taxonomy of drawings of runtime objects

comprehension. DDD [25], JIVE [7], and HDPV [20] pertain
to this category.
Some tools are focused only on specific contexts or data

types, which enables them to display high-level views fully
automatically, i.e., without any additional scripting. For ex-
ample, a tool byAlsallakh et al. [1] shows searchable lists, line
charts and frequency-based visualizations for arrays. Hoff-
swell et al. [8] designed a set of sparklines (word-sized visu-
alizations) for selected data types, such as numbers and sets.
Kanon [11] displays node-link diagrams for data structures,
particularly linked lists, in a live programming environment.
Reactive Inspector [16] is limited to reactive programs.
In scriptable approaches, source code must be written to

produce a given visualization. Each script is applicable in
a given context – usually for a given class. DoodleDebug
[17] is based on an idea that we should define graphical rep-
resentations of Smalltalk objects (in methods drawOn: and
drawSmallOn:) in the same way as we define the string rep-
resentations (printOn:). Vebugger [14] suggests a similar
practice for Java.

TheMoldable Inspector [3] enables construction of domain-
specific debugging object visualizations. They are written
using the supplied framework which aims to make the cre-
ation of new views as simple as possible. The views can
include interaction possibilities.
Rein et al. [13] designed an approach using the Vivide

environment to construct custom live views, such as tables
or histograms, during the development of data-intensive
programs.
Although not aimed directly at debugging, the Morphic

user interface framework [10] supports visualization of se-
lected object properties. The visualization is live, i.e., the
visual representation changes when the underlying object is
modified.

5.2 Empirical Studies
Chiş et al. [3] asked developers about their general attitude
toward object inspectors. They found that the developers
would like to display different views of the same object based
on the task begin performed and explore logical connections
between objects. They also listed 8 categories based on the
analysis of the views written for the Moldable Inspector
framework. However, the analysis was focused purely on
the implementation aspect (they distinguished categories
such as a list, tree, Morph, Roassal view). Furthermore, they
did not discuss challenges, such as how to display objects of
abstract nature. According to Chiş et al. [3], fully automated
generation of domain-specific views is an open question,
which is one of the topics discussed in our article.

Lee et al. [9] interviewed programmers about the impor-
tance of features in diagramming tools. Among other find-
ings, object diagrams representing runtime states were con-
sideredmore important than static class diagrams. No further
analysis was performed though.

There exist multiple studies focused on developers’ draw-
ings. For example, Dekel and Herbsleb [6] studied the no-
tation used in design drawings. Baltes and Diehl [2] inves-
tigated the use of sketches and diagrams in practice. None
of these studies is focused on runtime views or object state
representations.

6 CONCLUSION AND FUTUREWORK
We presented an exploratory study in which the participants
were asked to draw the given objects in the program on paper.
The perception of a suitable visual representation varied
greatly across both objects and individuals. After describing
the taxonomy of the drawings in detail, we now present it
visually in Figure 9.
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For every object in our study, we received at least a few
meaningful drawings. Although we cannot draw final con-
clusions, we are inclined toward the idea that all objects
can be visualized in a domain-specific way. However, the
more complex or abstract is an object, the more difficult and
human-intensive process is necessary to produce its visu-
alizations. Therefore, full automation may be unattainable
for all objects. Furthermore, for some objects, the view of
the process in which the object is involved is more impor-
tant than its state. In spite of that, we described multiple
ideas which can either partially improve the current fully
automated generic views, or ease the manual creation of
domain-specific views.

To summarize, our contributions are:

• a method to brainstorm possible object visualizations
without actually implementing them,

• a dataset of drawings obtained during our study, which
can be used for further analysis,

• a set of ideas to improve both generic (automated) and
domain-specific views,

• a preliminary taxonomy of runtime views of objects.

Although in this paper we only touched the surface of the
problems regarding the automation of domain-specific view
generation, it is a very promising future research direction.
On a sample of object–view pairs, we can try to map indi-
vidual object fields and other available execution data onto
the individual parts of the graphical views. Then we could
devise heuristics regarding this mapping – for example, con-
ditions when a numeric field is printed literally and when it
is reflected in geometrical properties, such as a length of a
line.
In the more distant future, we envision debugging tools

which will utilize these heuristics and automatically display
at least partially domain-specific object visualizations, even
in the absence of any hand-coded representations. Of course,
this will be only applicable to a certain degree and in many
cases, generic visualizations will be displayed instead.
Our study can be also expanded to include drawings of

changes between two or multiple states instead of describ-
ing only one state at a time. Since the task being solved can
affect the usefulness of visualizations, we should perform
studies with specific tasks given to participants. Other con-
textual information, such as the programmer’s knowledge
profile [12], could be taken into account. Finding whether
domain-specific visualizations designed by one person are
comprehensible by other developers is another promising
future research idea. Finally, we could try to explore the appli-
cability of the results in areas broader than debugging, such
as software reengineering, teaching, or even psychology.
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